
Web application security

Some examples and solution
techniques

Read the book

"Foundations of Security: What Every
Programmer Needs To Know“ by

Neil Daswani, Christoph Kern, and
Anita Kesavan

Goals of an attacker

• Read private data: user names, passwords, credit
card numbers, grades

• Change data: grades, prices of products, passwords

• Spoof: pretend to be someone they are not

• Damage or shut down the web site

• Harm the reputation

• Spread malware

These goals can be achieved by

• Cross-site scripting or HTML injection

• Denial of service (DoS): saturating the server

• Session hijacking

• SQL injection

• …

The security mindset

Assume nothing. Trust no one

RESOURCE DISCOVERY

Resource discovery

• Result of ordering a movie:

http://www.example.com/movies/2010/the-dark-knight?prepaid=true&price=4.99

• Try:

http://www.example.com/movies/2010/

http://www.example.com/movies/2010/avatar?prepaid=true&price=4.99

• Bad programming example:

Lecture: http://csci.viu.ca/~barskym/WP2013/NODE_JS/NodeLab.pdf

• Try:

http://csci.viu.ca/~barskym/WP2013/NODE_JS/

Guessing the file name

• We try to login, we know the name but not the password

• We try one guess and are forwarded to login-failure.php

• Try

manually change the URL to login-success.php, login-ok.php,
maybe this will let us in

Changing GET parameters

http://www.example.com/videos/movies/2010/the-dark-
knight?prepaid=true&price=4.99

• Try

Change value for price

Omit parameter

Pass other parameters: debug=true or admin=on

Examining page source and resource
files

• We know how to see file directory
• We can see the source of the page, which supposedly requires authentication

<?php

// User name and password for authentication

 $username = 'rock';

 $password = 'roll';

 if (!isset($_SERVER['PHP_AUTH_USER']) ||
 !isset($_SERVER['PHP_AUTH_PW']) ||

 ($_SERVER['PHP_AUTH_USER'] != $username) ||
 ($_SERVER['PHP_AUTH_PW'] != $password)) {

// The user name/password are incorrect so send the authentication headers

 header('HTTP/1.1 401 Unauthorized');

 header('WWW-Authenticate: Basic realm="Guitar Wars"');

 exit('Sorry, you must enter a valid user name and password to access this
page.');

 }

?>

Generating and examining error
messages

• Helpful (to a developer) error messages are dangerous
security pitfalls

• Try to cause the page to generate an error and get interesting
information from the error message

• Example: login page

• Enter invalid characters for user name, and get:

Sorry, a database error occurred.

(Error details: Access denied for user ‘jessica’ using password:
YES)

Custom message –
intended for the user

Helpful message – intended for the developer

MANIPULATING FORM INPUT

Input validation

• Web applications often accept input from their users.

• To be secure, web applications should not trust
clients, and should validate all input received from
clients.

<input type=“hidden” value=“?”>

• Hidden values in HTML forms are not directly shown
to the user in the web browser’s GUI.

• However, these hidden values can be easily
manipulated by malicious clients.

• Data submitted from hidden form fields should be
considered input and validated just like all other
input, even though the server typically generates
information that is stored in hidden form fields.

Example: pizza confirmation form

<FORM ACTION="submit_order" METHOD="GET">

The total cost is 5.50.

Are you sure you would like to order?

<INPUT TYPE="hidden" NAME="price" VALUE="5.50">

<INPUT TYPE="submit" NAME ="pay" VALUE="yes">

<INPUT TYPE="submit" NAME ="pay" VALUE="no">

Example: pizza confirmation form

<FORM ACTION="submit_order" METHOD="GET">

The total cost is 5.50.

Are you sure you would like to order?

<INPUT TYPE="hidden" NAME="price" VALUE="5.50">

<INPUT TYPE="submit" NAME ="pay" VALUE="yes">

GET /submit_order?price=5.50&pay=yes

Click issues the following request

• Once the web server receives the HTTP request, it then sends a request to a credit
card payment gateway to charge $5.50.

• Once the credit card payment gateway accepts the charge, the web server can
dispatch the delivery person.

Getting pizza for 0.01 $

• To change the value of the transaction: view the
source code of the HTML form in a text editor, and
change the value in the hidden form field from 5.50
to 0.01.

• Simply save the modified HTML to disk, reopen it
with a browser, and submit the form with the
modified price to the server!

GET /submit_order?price=0.01&pay=yes

Hidden fields: conclusion

• Hidden form fields are only visually hidden from the
user, but are effectively sent “in the clear” from a
security standpoint.

• As such, they can be easily accessed and
manipulated by malicious clients.

• Do not use hidden fields to maintain state of the
application

JavaScript used to compute values of
hidden inputs on client

<SCRIPT>

function computePrice() {

 f.price.value = 5.50 * f.qty.value;

 f.order.value = "Pay $" + f.price.value

}

</SCRIPT>

Bypassing JavaScript

• Again, simply save the HTML page to disk, delete the
JavaScript from the HTML page, substitute 10000 for
the quantity and 0 for the price, and submit the
form.

• Alternatively, just submit an HTTP request such as

GET /submit_order?qty=1000&price=0&Order=Pay

• Note for the programmer: Do the price computation
on the server, and charge the user the price that is
computed by the server.

Ordering pizzas for all my friends

• Use tools such as curl (http://curl.haxx.se) or Wget
(www.gnu.org/software/wget). These are open source, command-
line tools that can be used to generate HTTP and other types of
requests in an automated fashion.

curl https://www.deliver-me-pizza.com/submit_order?price=0.01&pay=yes

• Switching to POST would not help very much.

curl -dprice=0.01 -dpay=yes https://www.deliver-me-pizza.com/submit_order

wget --post-data 'price=0.01&pay=yes' https://www.deliver-me-
pizza.com/submit_order

For the programmer

• There is no reason that the web server should trust any of its
clients: By sending the transaction state back to the client in
response to the order and confirmation forms, it gives the
client the ability to tamper with that state.

• Possible solutions:

1. Keeping an authoritative copy of the session state in a
database at the server.

2. Sending the authoritative state back to the client, but with a
“signature” that will alert the server of any potential
tampering with the state.

Solution 1:
Authoritative state stays at server

• The price of the transaction is not sent back to the client.

• In response to filling out an order form, the server randomly
generates a new 128-bit session-id

• The server keeps a table of session-ids and the corresponding prices
for client transactions.

• It sends it back as a hidden field in the confirmation form

<INPUT TYPE="hidden" NAME="session-id"

 VALUE="3927a837e947df203784d309c8372b8e">

• When submits, issues:

GET /submit_order?session-
id=3927a837e947df203784d309c8372b8e&pay=yes

Now orders are less vulnerable,
but still …

• Our only chance for a free pizza is to guess valid session-ids.
• If we are lucky, we could issue HTTP requests for these session-ids

with pay=yes
• In a real application, some additional state is kept in the database:

the customer’s address, the quantity of pizzas, the user’s credit card
number, and other transaction details.

• We may be able to modify an existing order to include additional
pizzas to be sent to our own address, but have the legitimate
customer’s credit card charged for the transaction!

• By choosing a 128-bit randomly generated session-id, our
probability of success is n / 2128, where n is the number of session-
ids in the server’s database.

For the programmer:
additional techniques

• You can have sessionids “timeout,” or expire after some time
period: anyone who starts ordering a pizza should be able to
complete their order within a k-minute period

If the user does not complete the order in k minutes, you have
the right to just delete it from the database

• You can have the session-id be the “hash” of a pseudo-
random number and the IP address that the web server
reports the client is connected from.

If you use this technique, an attacker not only needs to guess a
valid session-id, but also needs to spoof the IP address of the
client in order to use the session-id.

Downsides of solution 1

• Your server-side infrastructure is no longer stateless.

• Every time an HTTP request arrives at your web server, a
database lookup needs to be done, and could turn the
database access into a performance bottleneck.

• If the database lookup takes nontrivial computational
resources, an attacker could issue many such requests with
random session-ids as part of a DoS (denial of service) attack.

Solution 2: signed state sent to client

• The authoritative state is returned to the client—but
to prevent a client from tampering with the state, a
“signature” of the transaction state is also sent.

• The server possesses a cryptographic key known only
to the server which it uses to produce the signature.

• The client will not be able produce modified
signatures to match the altered state, because it
does not know the server’s key.

Signed confirmation form

• When a client fills out an order form, the server sends back a form
that includes all the parameters of the transaction (including the
price) and a signature:

<INPUT TYPE="hidden" NAME="item-id" VALUE="1384634">
<INPUT TYPE="hidden" NAME="qty" VALUE="1">
<INPUT TYPE="hidden" NAME="address" VALUE="123 Main St, .. ">
<INPUT TYPE="hidden" NAME="credit_card_no" VALUE="5555 ..">
<INPUT TYPE="hidden" NAME="exp_date" VALUE="1/2012">
<INPUT TYPE="hidden" NAME="price" VALUE="5.50">
<INPUT TYPE="hidden" NAME="signature"
 VALUE="a2a30984f302c843284e9372438b33d2">

Message Authentication Code (MAC)

• The signature was generated by computing a message
authentication code (MAC) over all the other parameters of
the transaction, including the item-id, quantity, address,
credit card number, expiration date, and price.

• The MAC is a function of a cryptographic key only known to
the server.

• If the client attempts to change the price or any of the other
parameters, the client will not be able to recompute a
corresponding signature because it does not know the key.

Cost of Solution 2 vs. Solution 1

• By using the signature-based approach, the server does not
need to keep track of sessionids.

• It can continue to be stateless at the expense of having to
compute MACs when processing HTTP requests and having to
stream state information to and from the client.

• For state-intensive applications, the amount of extra
bandwidth required to stream state may be more costly than
the server-side storage required for user data in a session-id–
based solution.

Solution 2 caveats

• The entire transaction state must be signed—not just part
of it (such as the price).

• Otherwise, an attacker can conduct (part of) a legitimate
transaction to coerce the server into generating a signature
for her, and she can then conduct an illegitimate
transaction by pasting in parameters of her choice that are
not included in the signature.

For instance, if only the price is signed, the attacker can go
through the order process having selected a cheap item to
obtain a signature on the price, and then submit that
signature and price in an HTTP request to purchase a more
expensive item.

INPUT VALIDATION

Client-side input validation

• Verifying data on client before sending it to server

• Decreases load on server, decreases response time,
but opens ways to invalid input

• Implicit validation: automatic enforcement of certain
constraints

• Explicit validation: JavaScript code executed before
submit event

Implicit client validation example

• Quiz application: uses hidden form inputs to keep track of user’s
score

<input type=“hidden” name=“word” value=“<?= $answer ?>”/>

<input type=“hidden” name=“total” value=“<?= $total ?>”/>

<input type=“hidden” name=“correct” value=“<?= $correct ?>”/>

• Assumption: with the next submission, the values do not change

Getting high score

• Open page inspection tools and change the values to
arbitrary numbers

• Submit the form

• Get result:

Your score: 100/100!

Explicit client validation

window.onload = function()
{
 document.getElementById(“frm”).onsubmit
 =validate;
}
function validate ()
{
 if (value!=“one” && value!=“two”
 && value!=“three”)
 {
 alert (“Freeze, hacker”);
 return false;
 }
 return true;
}

• In browser console set
form.onsubmit=undefi
ned

• Submit the form with
invalid data

Rules of validation

Any client-side computation or validation
should be repeated on the server

DANGEROUS INPUTS

Cross-Site Scripting (XSS)

• Submitting HTML or JavaScript code inside
form fields and causing this code to appear on
other pages

XSS example (link)

<FORM action="answer.php" method="post">

Your question <INPUT type="text" name ="question">

<INPUT type="submit" value="Answer me">

</FORM>

http://owl.csci.viu.ca/~barskym/security/index.html

Changing HTML output

• Try input:

A-HA

<em style="border-bottom: 3px dotted green">HM-M

<script>alert("hello");</script>

hi there <p>this site was written by evil terrorists

Defending your text inputs:
escaping special characters (PHP)

• htmlspecialchars (s) –Replaces some tags with HTML
character entities

• htmlentity (s) – Replaces all characters that have an
equivalent HTML entity with this entity

• htmlspecialchars_decode, htmlentity_decode –
converts entities back to a plain text

$text = “<p> hi 2 u & me </p>

$text = htmlspecialchars ($text)

// @lt;p> hi 2 u & me @lt;/p>

SQL injection

• SQL injection is the act of inserting malicious SQL
queries into an input field to reveal sensitive private
data and make unwanted modifications

SQL injection examples
• Getting all data from the table

SELECT fieldlist

FROM table

WHERE field = 'anything' OR 'x'='x';

• Discovering table names

SELECT fieldlist

FROM table

WHERE field = 'x' AND 1=(SELECT COUNT(*) FROM tabname); --';

• Getting personal data

SELECT email, passwd, login_id, full_name

FROM members

WHERE email = 'x' OR full_name LIKE '%Bob%';

And more examples

• Adding a new member

SELECT email, passwd, login_id, full_name FROM members

WHERE email = 'x'; INSERT INTO members
('email','passwd','login_id','full_name') VALUES
('steve@unixwiz.net','hello','steve','Steve Friedl');--';

• Mail me a “forgotten” password

SELECT email, passwd, login_id, full_name

FROM members

WHERE email = 'x'; UPDATE members SET email =
'steve@unixwiz.net' WHERE email = 'bob@example.com';

Preventing SQL injections

• Validate and escape submitted data

• Use PDO and bound variables

$db->quote ("oh no, 'quotes'!")
//returns "oh no, \'quotes\'!“

$stmt = $db->prepare("SELECT * FROM user WHERE
name=:name AND password=:pwd");

$stmt ->bindParam (":name", $_POST["name"]);

$stmt ->bindParam (":pwd", $_POST*“password"+);

$stmt->execute();

AJAX AND JSONP

Examining Ajax requests

• You can see Ajax requests issued in JavaScript

• You can also see the results of Ajax requests using
developer tools

• Then you can issue similar requests from your own
pages

• Conclusions: no Ajax requests for money transfers for
bank accounts

JSON-P: injecting JavaScript

• Including script tags from remote servers allows the remote
servers to inject any content into a website.

• An effort is underway to define a safer strict subset definition
for JSON-P that browsers would be able to enforce on script
requests with a specific MIME type such as "application/json-
p".

• If the response didn't parse as strict JSON-P, the browser
would throw an error or just ignore the entire response.

• For the moment however the correct MIME type is
"application/javascript" for JSONP.

JSON-P: possible scenarios

• A malicious page can request and obtain JSON data
belonging to another site. This will allow the JSON-encoded
data to be evaluated in the context of the malicious page,
possibly divulging passwords or other sensitive data if the
user is currently logged into the other site.

• Your page is requesting data from a malicious site: use your
own callback function, you also know JSON format that you
expect and can check that JSON objects passed as
parameters do not contain any methods, just data

• Malicious RESTful services can potentially ignore your
callback function and execute their own JavaScript
functions, which can make use of private values of the page
form inputs

JSONP - conclusions

• The JSON-encoded data should not contain sensitive
information

• You should carefully treat results of JSONP requests in your
own callback functions

• Use RESTful services only from the trusted sources

